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To D. H. Lehmer for his 70th birthday 

Abstract. A method is given for calculating the value of Dirichlet L-functions near the 

real axis in the critical strip. As an application, some zeros for zeta functions of com- 

plex quadratic fields are calculated. 

1. Introduction. The Dirichlet L-functions L(s, X) = Z=' x(n)lns are com- 

monly believed to have all their nontrivial zeros on the critical line Re(s) = 1/2, although 
no single L-function is known to have this property, nor are any counterexamples 
known. Extrapolation from the experience of [1] for v(s) indicates that one is un- 

likely to find counterexamples by calculating zeros up the critical line. The zeros near 
s = '/2 are of some independent interest. If X is a quadratic character with X(- 1) = 
-1, then zeros of L(s, X) especially close to s = 1/2 have an effect on the class num- 
bers of complex quadratic fields [2]. L-functions for these characters with conductors 
no greater than 800000 are known not to have any real zeros in the critical strip [9], 
[10] . Also, zeros near s = 1/2 for any X clearly affect, through the functional equa- 

tion, the argument of the Gauss sum, which is connected with a conjecture of Kummer. 
In this paper I give a method for finding zeros of L(s, X) with Re(s) = 1/2 and 

Im(s) fairly small, say Im(s) < 1. All known methods for finding zeros of these func- 
tions depend on the evaluation of some auxiliary function which has the same zeros. 
The values of the auxiliary function are the data which some scheme of inverse inter- 

polation uses to locate the zeros of the L-function. The method used in this paper 
requires O(k' 12 log k) operations for each function evaluation, which compares favor- 
ably to the method of [3], [4] which requires more than k steps. For the purposes 
of computation, therefore, the present work is a k-analogue of the paper of Lehmer 

[5] . 

A rough guide to the contents of the sections is as follows. Section 2 contains 
results used in the calculation of some zeros of L(s, X) for the type of quadratic 
characters mentioned above. Section 3 gives a completely independent check on the 
calculation. Section 4 presents the actual numbers, and Section 5 contains further 
observations on general X. 

The methods in this paper were developed for application in [2] and so are, in 
icon,sidePrahle -mensllre iniinf wxark- wvith Wilab TAAnncntrmo. 
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2. The Method. In this section X denotes a primitive quadratic character de- 
fined modulo k. This approach to determining zeros of L(s, X) starts with the func- 
tional equation in the form 

~(s, x = (~s+a)/2~( ? a)( x=()(s+a)I2 s.(l +(sa 7rn2) x 
( ) 

L 
) 

s X 
( ) n- 

(1) ? (k)(i 1+a-s)/2 "X n)i?as 2Tf2 

(l) ~~+ _X S 

S(nII 
a '-k s )f 

Here F(w, a) = f,'xW- 1e-x dx, and a = (1 - X(- 1))/2. This is the functional 

equation since the right-hand side is invariant if s is changed to 1 - s. It will be seen 
that this formula is most satisfactory when Im(s) is near zero. I shall not prove this 
formula since it is actually an intermediate step in the usual proof of the functional 
equation which uses theta functions. If s = 1/2 + it, then the function Z(t, x) = 

(1/2 + it, x) is real, and whenever Z(t, x) changes sign, L(1/2 + it, x) has a zero. To 
use (1) to calculate Z(t, x) it is necessary to bound the error made in truncating the 
series. I shall assume that X(- 1) = -1 throughout the rest of this section, since this 
is the only case for which calculations were actually performed. This restriction only 
affects Lemma 1. 

First note that Re(w) S 1 implies that 

(2) IF(w, a)I < -oexRe(w) 1 

Hence, writing s = a + it, a < 1, 

(ky+ 1)12 
00 

X(n)~ s? I___2 e-lTn2Ik 
7r) N+1 ns ( 2 'k )| 7r< n 

< - 2? e x /kdx < k2 e-lN 2/k 
7( x ~ 2iT N 

This bound is independent of s, and also proves the following lemma. 
LEMMA 1. If s = 1/2 + it, then 

Z(t, X) - 2 Re[ (I)F 1/ Q~ <k2N/ 
|Z(t,~ ~ Y X 2ReE 7r) ns 

r 
2 'k )|< 7r2N2 

The first term of the series is, for large k and small Itl, close to (k/7r)/4F(34), 
so when N is larger than (k log k)/2 the truncation error for the series becomes very 
small. In the calculations described below I took N = (28k/ir)/2 which makes the 
truncation error no larger than 1.57*10-9 for k less than 200000. 

The principal difficulty in using the formula in Lemma 1 to calculate Z(t, x) is 
calculating the values of F(34 + it/2, a)). To see what is involved, consider kA = 115147. 
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Here N = 1013, so a varies over the interval (2.7.10-5, 28.0). Hence the evalua- 
tion of Z(t, X) requires about 1000 calculations of (3/ + it/2, a) with the same 
value of t. For small a the value is clearly close to F(3 + it/2), so some sort of 
power series approximation seems reasonable. For large a, the bound (2) indicates 
that the function can be sufficiently well approximated by Gauss-Laguerre integration 
using a few points. In between it seems reasonable to construct a table and interpolate 
in it, by some means, to the desired argument. One would like to calculate the inte- 
grals sufficiently accurately that the accumulated truncation and rounding error for the 
integrals is about as large as the bound for the truncation error in Lemma 1. 

In this paper, the term truncation error refers to the error due to the use of 
approximations to the limiting processes of analysis, while rounding error refers to the 
error due to using finite-precision arithmetic. 

LEMMA 2. Suppose N + 2 < a? 0 and 0 < Re(w) < 1. Then 

/ N xiJ+ s Re(w)+N+ 11 

fl(\1fa)l- (r(w) L E s)j! J <IN + I + wi(N + 1) aN + 2 

Proof. 
N )+ 

F(w, a) = r(w) - J xw_ 1 ? dx = r(w) - +) +? E 
'O L j! 0~~~~~ + s)i! N' 

where 
R e (w) ax aRe(w)+N+ 1 l) /Z(N 

N IN+ 1 j=fl! I + 1wl(N + 1)! o\+ 2J 

Some typical bounds for this truncation error for Re(w) = .75 are 2- 10- 1 5 for 
a:=.5,N=12,910-16 for a=1.5,N=18, and 9.10-15 for a=3.2,N=24. 
An alternative approach to calculating 17(w, a) for small a is to integrate f0cc"leX dx 
by parts N times, but this seems to lead to somewhat larger error terms. The value 
of r(w) required for the application of Lemma 2 can easily be found by using the 
relation wl(w) = F(w + 1) to shift the argument to the right, and then using Stirling's 
approximation. My program calculates r(w + 8) using 6 terms of the asymptotic 
series, which gives an error of no more than 2-10-14. 

In order to justify the approximations used for larger a, I need some unpleasant 
estimates. 

LEMMA 3. Suppose w = u + iv with 0 S u S 1, 0 S v, and that 0 < c < 
a ?x1 - b, for 1 S j A n. Let C be a simple closed contour containing all the x 
in its interior. Then 

I e-xxw-l d <((n - 1)/2) 1 + ev7r 2 e-Ccu- r~~~d < 7 -2-. -( 2iri JcH(x, n) IP (n/2) 47r 1/ (- 
c)n-, 

| 1 r((n - 1)/2) 1 + e7r2 Cu 
i1Jrc5 I(X, n) d J(n/2) 47r112 (a-c)-1 

where H4(x, n) = fl7= 1(x - Xj). 
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Proof. The two estimates are much the same, so I only prove the first. Further, 

the estimates are empty if n = 1, so assume n > 2. Denote the integral by I. De- 

form the contour to a vertical line segment with Re (x) = c and the arc of the circle 

lxl = R to the right of Re(x) = c. The integral on the arc of the circle is 

< RRU - lCevlT2/Rn = O(Ri-n 

Therefore 

lII J1 dt, 27r-o la - (c +it)l 

since a < Xj for 1 j < n. Then 

III v2 

? e"/I? 

(C2 + t2)(u 1)/2 dt 

2ir 'J (a )2 ? t) )fl 
which proves the estimate, since u S 1 and 

2((1 ? z2f-'2 dz = -(1/2)F((n - 1)/2) Q.E.D. 
Jo ~ ~ ~ z 

F(n/2) 
QED 

These estimates are useful in bounding the errors in the Gaussian integration 

formulae used below. An outline of the derivation of these formulae is presented so I 

can make use of the estimates just proved. 

Let {p1(x)} be a family of monic polynomials with deg(p1) = j and orthogonal 

with respect to the inner product defined by 

(f g) = f f(x)g(x)w(x) dx, 

where w(x) is positive on [a, b]. Let x1, ** *, xr be the zeros of Pr(x). An 

elementary result in the theory of orthogonal polynomials says that each xj is in 

(a, b) and that the xj are distinct. Let p(x) be the polynomial of degree r - 1 

satisfying p(x1) = g(x1), 1 1(l)r, where g(x) is some function analytic in a neigh- 

borhood of [a, b], and let q(x) be the polynomial of degree r - 1 satisfying 

(z - x1)-1 = q(x1), j = 1(I)r. The coefficients of q(x) are rational functions of z. 

Then it is easy to verify that 

l/(z - x) = q(x) + Pr(X)I(z - x)H(z, r), 

and that 

Pr(X) f g(z) d 
g(x) = p(x) ? 27ri c(z-x)H(z, r) 

p (x)q (x) g(Z) P r(X)2 g(z) 

2iri H(z, r) dz? 2iri (z - x)Hl(z, r) 

Then fa'pr(x)q(x)w(x) dx = 0 since deg(q) < deg(Pr), so 
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(3) (p(x)w(x) dx + 2 dz dx. dx = dx ?~~~~~~ Jcr (z - x)H(z, r)2 

Further, it is well known that 

cb r 
(4) Jap(x)w(x) dx = E ajg(xj), a ~~~~j= 1 

where the weights a1 depend only on w(x) and r. Thus, once the a,, xj are known, 
(3) becomes an approximate integration formula in which the last term is the truncation 
error. For the classical orthogonal polynomials, fbpr(X)2w(x) dx is known, so a 
bound for the contour integral in (3) provides a bound for the truncation error for the 
approximate integration formula. I only need two families of polynomials, the first 
orthogonal on [- 1, 1] with w(x) = 1, and the second orthogonal on [0, 00) with 

w(x) = e-X. Except for constant factors, the first are the Legendre polynomials and 
the second are the Laguerre polynomials. 

LEMMA 4. Write f(y) = e yyw 1 with w = u + iv, 0 < u < 1, v < 0. Let 

x1, *' X. be the zeros of the rth Legendre polynomial; let b 1,. . , br be the 
corresponding weights in (4). Then 

T bb ar 
f(y) dy 2 hi bt(yi) 

e-CcU- 11 + ev1T2 (r!)4 F(r) (b _-a)2 
(a - C)2 r 47r11/2 ((2r)!)2 F(r + 1/2) (2r 4- 1) 

where 2yj = (b - a)xj + a + b. 
Proof Write Pr(x) = HI(x, r) = H (x - xj). Then [6], 

4 )2 dX= 22 r+1 (r!)4 
j lPr(X) dx 2r + 1 ((2r)!)2 

Let x = (2y - (a + b))/(b - a), so that fa6f(y) dy = ((b - a)12)fL 1f(y) dx. Now it 
follows from (3) that 

dx- ~ ~~~~1 2TiiD (z - x)HI(z, r)2 d x 
fIJ y E ~bIJvI)j)|_ Pr(X)2 1' f (((b -a)z ?a+)2 ? 

where D is a simple closed contour containing x, x1, , xr. Changing variables in 
the contour integral reveals that it is equal to 

(b - a)2r2d2r2. fc (t f(t) dt, 2r t- y)H(t - y)1)2 
5 

and an appeal to Lemma 3 completes the proof of this lemma. Q.E.D. 
The proof of the following lemma is even simpler. 
LEMMA 5. Let z1 .. Zr be the zeros of the rth Laguerre polynomial and 
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let cl, cr be the corresponding weights in (4). Then 
r~~~~ 

1Je-xxw- 1 dx - e-a 
r 

c +(z ? a)W- 1 < (r!)2 ( I + evl/2 cu- lea 
Ja F~~~~~c(z (r?+1/2) 47T1/ 2 (a_T[7j2F 

In the last two lemmas c is the free parameter of Lemma 3. The x;, z;, bj, 
and c; are tabulated to 30 decimal places in [7]. When applying these lemmas one 
chooses c so that the bound on the error is as small as possible. 

The tools for evaluating Z(t, X), I tl < 1/4, are now at hand. In the calculation 

leading to the Table, for each t, the machine calculated a table of r(3Q + it/2, a), 

a =3.2(.2)5.8(.4)10.2(.8)15.8, by calculating rFQ + it/2, 3.2) using Lemma 2 with 

N= 24, and then calculating each successive function value from the previous value 

by 4-point Gaussian integration. (Lemma 4 with r = 4.) Lemma 4 shows that none 

of the tabulated values has a truncation error of more than 10- 12 . As a measure of 

the actual error, the tabulated value of r(3F + it/2, 15.8) minus a good approximation 

to f5 8e-XxS-1 dx was smaller, about 2 10-15. The complicated form of the table 

was motivated by a desire for efficiency. One does not wish to spend too much time 

calculating the table, and since the values of a are not uniformly distributed, it seems 

reasonable to have fewer tabular values for large a. The evaluation of any particular 

rFQ + it/2, a) during the calculation of the series in Lemma 1 depends on the value 

of a. If a < 3.2, the series of Lemma 2 is used, with N chosen as indicated im- 

mediately after the proof of Lemma 2. If 3.2 < a < 16, and ao is the nearest argu- 

ment for which the function value is tabulated, then 

r(.75 + it/2, a) = r(.75 + it/2, ao) + f e-xX75+t/2 dx/x, 
0 

and the last integral is approximated by 3-point Gauss-Legendre integration, and the 
truncation error is bounded using Lemma 4. Finally, if a > 16, the value of 

F(.75 + it/2, a) is approximated by 4-point Gauss-Laguerre integration as in Lemma 

5. Using Lemmas 4 and 5 it is easy to see that the total truncation error in any incom- 
plete r-function is no more than about 10-12, so that this error contributes no more 

than 3 10-12k to the error in the series of Lemma 1. Thus, for k around 105, 

the truncation error from the incomplete F-functions appears to be the dominant 

source of error in the calculated values of Z(t, X). 
In addition to the errors already considered, there are inaccuracies in the calcula- 

tion of eX, log x, and other elementary functions, and errors due to finite-precision 

arithmetic, all usually no more than one part in 101 5. One can estimate the effect of 

these sources of error on the accuracy of the calculated value of Z(t, X)- Also it is 

necessary to check the program very carefully to make sure it is doing what it is sup- 
posed to. In place of these otherwise necessary and probably unconvincing details, 
the next section contains another, similar way of calculating the zeros of the Table, 
which gives the same answers, but which uses none of the calculations made by the 

program discussed above. 
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3. Another Function. If X(- 1) = -1, then t(s)L(s, X) = UK(s), the zeta func- 
tion of the complex quadratic field K = Q(ejU), k being the conductor of the real 
valued character X. The functional equation for rK(S) can be written in a form sim- 
ilar to that of (1), namely 

,K(S)= (k 
r(s)?K(s) = - L (K)+ k )Y s n? I(s, 27rn/k"12) ~~K~~J ~2s(s -l) (27T /n=:in 

(5) 

+ (2) E n (l -ss,2nlk12) 

where k > 4, h(K) is the ideal class number of K, and r(n) = 'j1nXY). 
If s = ? + it, then the function ZK(t) = TK(-5 + it) is real and has its zeros 

at exactly those t at which t(s)L(s, X) is 0. Since the smallest zero of c(s) has 
t > 14, any zeros of ZK(t) with 0 < t < 14 must be zeros of L(s, X). Hence for- 
mula (5) can be used in place of formula (1) for finding zeros of L(s, X). A potential 
advantage to using (5) is that many of the r(n) wil be zero, so that calculating tK(S) 

may require calculating fewer terms in the infinite series. Formula (5) also requires 
the value of h(K). 

LEMMA 6. If s= + it and k > 4, then 

|ZK(t 
- 2 Re + ( g)E 2 r(s, 27Tn/kl /2)]|< 3/ 2 

Proof The left-hand side is bounded by 

12 
1/2 0 ()12 ./ 0 0 

2( 21 ) , r(.5, 21Tn/k1 /2) 6 ( 2) | 2J /v- X1/2e-x dx du, 2T N+1 1 7 

since r(n) < d(n) < 2n?2. This last bound is no larger than 

- rIk1/2 2/k fe3/7 du k e-2rN/"k. Q.E.D. 
ir N ~ 

_ d -172 

The truncation error in Lemma 6 is somewhat larger than the error term in Lem- 
ma 1, at least for the k used in this paper. The program used to calculate ZK(t) 
works in much the same way that the program for Z(t, X) does. For each t this 
program tabulates r(.5 + it, oa) for a = 3(.5)13 using 6-point Gauss-Legendre inte- 
gration. The program uses the series of Lemma 2 if a < 3, and 6-point Gauss-Laguerre 
integration if oa > 13, while for intermediate values of oa it interpolates in the Table 
using 6-point Gauss-Legendre integration. A discussion of the accuracy with which 
ZK(t) can be calculated is available in [2]. The bounds given there depend on Lemmas 
4 and 5, and are very conservative. 
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TABLE 

guaranteed 
k y ZK(y) Z(y, x) - log k accuracy 

21r x 1010 

163 .202901338 2.1 -15.7 .164 5 

427 .249924977 4.1 -54 .241 5 

2683 .156678803 7.3 -210 .197 5 

17923 .030985799 4.6 -310 .0483 8 

28963 .033774095 4.7 -400 .0552 10 

30895 .018493558 10.3 -910 .0304 6 

37427 .019504713 7.6 -740 .0327 7 

115147 .003157614 .73 -120 .00586 95 

123204 .010649913 9.2 -1620 .0199 10 

139011 .012930178 9.4 -1760 .0244 10 

145412 .017311754 13.6 -2600 .0328 10 

151419 .021346721 12.5 -2450 .0405 10 

188995 .026513007 9.0 -1970 .0513 12 

991027 .151734485 2.4 -1320 .333 75 

4. Calculating the Zeros. In this section I use Z(t) to denote either Z(t, X) or 

ZK(t). To find a zero of Z(t) the program locates an interval in which Z(t) changes 

sign, and then uses the secant method to get to a point where the calculated value of 

Z(t) is very small. In every calculation the secant method converged very rapidly. 

The point to which the secant method converges is taken to be an approximation to a 

zero of Z(t). These are the values given in the column headed y in the Table. The 

next two columns in the Table are calculated values of Z'(7). If the values of Z(t) 

are known to within an error of e and if the value of Z' is known, then the true 

zero cannot differ from the calculated zero by more than e/IZ'I. This observation is 

the source of the column labelled "guaranteed accuracy x 101o''. The calculated values 

of y are all given to nine decimal places even when the two programs did not give 

such an accurate answer. In these cases the value given is an average of the values cal- 

culated. The column headed ('y log k)/27r gives a measure of how close the zero is to 

the real axis. 

Except for k = 991027, the values of k in the Table are just those from [2]. 

In [2] some of the y were necessary to prove a theorem about small class numbers. 

The proof would go through if the values were only known with an accuracy of one 

part in 20, so for this purpose the accuracy of the Table is not needed. The value 

k = 991027 is included because h(K) = 63, according to Daniel Shanks, which is 

very small compared to the size of k. This example shows that closeness of 'y to 0 

is not invariably implied by small class number. 
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5. Other Characters. It is clear that (1) and the results of Section 2 can be used 
without change when X is real-valued and X(- 1) = 1. Unfortunately, the formula 

corresponding to (5) for these characters is much less convenient, since it contains 
double integrals in place of the integral defining r(s, a). It does not seem to be pos- 
sible to use this formula to find zeros of L(s, X), so there is no independent check 
available for zeros calculated using (1). 

The generalization of (1) to any primitive character is 

(s x) = (k+ )/(s+a)12 s(s +a)/2 ) 

(6) 

ia kl/2 ( 0\(-s+a)/2 xn /-s +a Tn 2\ 
+ x(n) Y/ ni 1\2 'k)' 

where r(X) = 2r= l X(J)ehiI/k 

The same arguments that prove Lemmas 1, 4, 5 show that O(k1? log k) terms 
of the series give t(s, X) accurately, if ItI is small, but it appears that the evaluation 
of r(X) requires nearly k computations. However, H. Montgomery observed that 
the functional equation for theta functions used in the proof of (6) contains r(x). 
Write 

00 2 2 
O(x, x) = , X(n)e -rn xlk, 01(x, x) = E nX(n)e-7rn x/k. 

n=1 n=1 

Then [8, p. 70] if X(- 1) = 1, it is true that r7(X)(x, X) = (k/x)/2O(lIx, X), and if 

X(- 1) = -1, 7(X)O (x, x) = ikl2x3128l(1/x, X). Taking x = 1 gives 

/ 00 2 

r(X)-= k12 expi arg E X(n)e-rn /kk if X(- )= 1, 

r(X) = k"2 exp( arg E n X(n)e n/k) if X(- 1) =-1 
\ n=1 

Now 
00 

2I C0 02 k ir2Ik 
|En;(n)e xe-k < x Ik dx e4rN 1k 

N+ 1 

therefore O(k' 12 log k) terms of the appropriate series are enough to calculate the 
Gauss sum. 
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